澳博app

数据分析从业者必看,10个加速python数据分析的简单的小技巧



雷锋网 AI 科技评论按,一些小的技巧在编程领域可能会非常有用,在数据科学领域同样如此。数据科学爱好者 Parul Pandey 在近日发表了一篇博文,分享了在数据科学中非常实用的 10 个小技巧。雷锋网 AI 科技评论将他的文章编译整理如下。

有时候,一点小小的黑客行为可以节省时间,挽救生命。一个小小的快捷方式或附加组件有时会被证明是天赐之物,并且可以真正提高生产力。所以,下面是我最喜欢的一些技巧,我以本文的形式一起使用和编译它们。其中,有些可能是相当有名的,有些可能是新的,但我相信下次您从事数据分析项目时,它们会非常有用。

1.Profiling the pandas dataframe

Profiling 是一个帮助我们理解数据的程序,而 Pandas Profiling 正是实现这一点的一个 python 包。这是对 pandas 数据帧进行探索性数据分析的一种简单快速的方法。pandas df.describe()和 df.info()函数通常用作 EDA 过程的第一步。但是,它只提供了非常基本的数据概述,对于大型数据集没有太大帮助。另一方面,pandas 分析函数使用 df.profile_report()扩展 pandas 数据帧,以便快速进行数据分析。它用一行代码显示了大量信息,在交互式 HTML 报告中也显示了这些信息。

对于给定的数据集,pandas 分析包计算以下统计信息:

n

结论

n

在本文中,我列出了在使用 Python 和 Jupyter notebook 时收集到的主要技巧。我相信它们会对你有用,你会从这篇文章中收回一些东西。好了,开始快乐的编码之旅吧!.

n

via:

n n n n n n n n n n n n n n